[PROC. ROY. Soc. VICTORIA, 23 (N.S.), PT. 11., 1911.]

ART. XXVII.—The Magnetic Properties of Stalloy.

BY H. R. HAMLEY, M.A.,

AND

A. L. ROSSITER, B.Sc.

(Government Research Scholars, University of Melbourne).

(With Plates LXII.-LXV.).

[Read November 10th, 1910].

(Communicated by Professor T. R. Lyle).

In the following paper are given the results of an investigation into the magnetic properties of the iron alloy called "Stallov." Particular attention has been given to "Stallov" by many investigators on account of the claims made by its inventor (Hadfield) with regard to its magnetic properties. The special feature of this alloy is its high specific electric resistance and high permeability. The specific resistance being about four times that of the best transformer iron, the eddycurrent loss for a given thickness of sheet would be greatly reduced, so that lamination need not be carried out to anything like the extent necessary with ordinary iron, and the question of insulation of laminae becomes less troublesome. It is more expensive than ordinary iron, but the increased expense is compensated by a reduction in size of the transformers etc., constructed of it, an increase in output, and greatly improved efficiency.

The special chemical feature of "Stalloy" is that it contains about 3.4 per cent. Silicon. The value of this alloy is emphasised in a paper by Epstein¹, where several tests of its properties are given.

Several investigations have been made by other experimenters by direct current methods, which agree fairly well together.

¹ Epstein, J.I.E.E., vol. xxxvi., 1907. Professor Turner gives the analysis as follows: Carbon .03, Silicon 3.4, Sulphur .04, Phosphorus .01, Manganese .32, Iron 96.20 per cent.

The most interesting of these are given by Wilson and others¹, Watson,² and the manufacturers. Sankey and Sons.³

Some interesting experiments on an alloy very closely allied to "Stalloy" are given by Barrett, Brown, and Hadfield⁴, and by Baker.⁵

The object of the present research was to investigate the magnetic properties of "Stalloy," not only with direct current, but also with alternating currents of varying frequencies. quencies.

The experiments have been divided into three divisions :---

(1) Statical tests.

326

- (2) Effect of variation of frequency on magnetic hysteresis.
- (3) Effect of annealing upon each of the above.

The usual statical experiments were made for inductions extending up to about 14,000. From these results were calculated the hysteresis losses and Steinmetz coefficients using as exponent in the usual formula the value 1.6 which was found to be approximately correct for this substance. The determination of these coefficients is important as from their values we are able to separate the hysteresis from the total loss in each of the alternating experiments.

The tests were made upon two rings as nearly alike as possible, one annealed, the other unannealed.

The alternate current experiments were divided into three series, of periods .07, .035, .02 respectively. In each of these the period and wave form of the magnetizing current were kept as nearly as possible constant as the induction density increased. The expressions for the amplitude and phase both of H and B are given in the tables which follow.

From these expressions, for each pair of associated waves of H and B was calculated the total loss per c.c. per cycle (I).

This was found to follow fairly well a formula proposed by Lyle³ for total loss in iron, namely : —

$$\mathbf{I} = (\alpha + \beta n) \mathbf{\mathfrak{B}}^x$$

¹ Wilson, Winson and O'Dell. Proc. Roy. Soc. Lond., 1908, vol. lxxx,

² Watson. Electrician, vol. Ix., p. 4.

³ Article "Stalloy." Electrician, vol. lviii., p. 692.

⁴ Barrett, Brown and Handfield. J.I.E.E., 1902.

⁵ Baker. J.I.E.E., December, 1904.

where a, β and r are constants for the material, n the frequency and \mathfrak{B} is the "effective induction," a quantity of great importance in the calculation of the eddy current loss (E), as will be explained later.

The method employed was similar to that described by Professor Lyle⁴. By means of his wave-tracer² the wave forms of the magnetizing current and the resultant magnetic flux pulsating in the iron can be accurately determined. The full wave being obtained, fifteen ordinates per half wave were taken, from which, without plotting, the first, third and fifth harmonics composing the waves can be calculated. Two methods of harmonic analysis were used (1) for approximately sinusoidal waves, that devised by Lyle³, (2) for waves into which harmonics higher than the fifth entered considerably, that of S. P. Thompson⁴.

The wave forms having been analysed, the results were reduced to absolute measure by the application of proper factors⁴. The magnetizing force and induction were thereby obtained in the form—-

$$\mathbf{H} = \mathbf{H}_{1} [\sin\omega t + h_{3} \sin 3(\omega t - \phi_{3}) + h_{5} \sin 5(\omega t - \phi_{5}) + \dots]$$

$$\mathbf{B} = \mathbf{B}_{1}[\sin(\omega t - \theta) + b_{3}\sin 3(\omega t - \theta_{3}) + b_{5}\sin 5(\omega t - \theta_{5}) + \dots]$$

In general, harmonics higher than the fifth were neglected and are not given in the tables. In calculating the total losses, however, these upper harmonics were included.

From these equations the value of the total loss per c.c. per cycle--

$$I = \frac{1}{4\pi} \int H d B$$

= $\frac{H_1 B_1}{4} [\sin\theta + 3h_3 b_3 \sin 3(\theta_3 - \phi_3) + 5h_3 b_5 \sin 5(\theta_5 - \phi_5)]$

is determined.

The amount of eddy-current loss per c.c. per cycle (E) was calculated from the approximate formula given by Searle and Bedford⁵.

¹ T. R. Lyle. Phil. Mag., 1905, vol. ix.

² T. R. Lyle. Phil. Mag., 1903, vol. vi.

³ T. R. Lyle. Phil. Mag., 1906, vol. xl., also Proc. Roy. Soc. Victoria, vol. xvii.

⁴ S. P. Thompson. Electrician, 1905.

⁵ Searle and Bedford. Phil. Trans., 1902, App.

H. R. Hamley and A. L. Rossiter:

$$\frac{dX}{dt} = \frac{x^2}{12\rho} \left(\frac{db}{dt}\right)^2$$

Where X is the space average of eddy-current loss.

- x the thickness,
- ρ the specific resistance,
- μ the permeability being assumed constant.

From this the eddy-current loss per c.c. per cycle may be reduced to the form⁵.

$$\mathbf{E} = \frac{\pi^2 x^2}{6\rho' \Gamma^2} \mathfrak{Z}^2$$

where $\mathfrak{Z} = \mathbf{B}_1 [1 + 9b_3^2 + 25b_5^2 + \dots]^{\frac{1}{2}}$
$$= \frac{\sqrt{2}}{\omega} \mathbf{R} \cdot \mathbf{M} \cdot \mathbf{S} \cdot \left(\frac{d \mathbf{B}}{dt}\right).$$

The statical hysteresis (U) was determined by Ewing and Klaasen's ballistic method, and from the results the Steinmetz coefficient σ obtained was plotted against the maximum induction by the use of the formula—

$$U = \sigma B_{Max}^{1.6}$$

In order to determine the value of U for alternating currents, it was assumed that it was equal to that obtained by the statical method for maximum induction equal to the maximum value (B_0) of B. From the above mentioned graph and formula U has been calculated for all inductions.

Having obtained all these quantities, the values of I-U-E, called by Fleming the 'kinetic hysteresis,' were calculated. These as well as I, U, E, have been given for each experiment.

The rings were prepared from the same sheet and were made as nearly alike as possible. A thin sheet of waxed paper separated each pair of discs and the wire used in the winding was taken from the same coil. After the laminae were well cleaned the mean thickness was determined by the specific gravity method.

The specific resistance was determined by the "drop of potential" method against a standard .1 ohm by means of a Wolff's potentiometer. Experiments were made on two samples, one of length about 80 cms. cut from the sheet, and another

Stalloy.

from a thin annulus cut from one of the actual rings used. The results differed by less than .1 per cent and agreed fairly well with the results of other experimenters.

The details of the coils are :---

		Annealed.	Unannealed,
No. of laminae	-	6	6
Internal diameter	-	6.927 ems.	6.927 cms.
External ,,	-	9.549 cms.	9.557 cms.
Mean thickness (x) -	-	.0757 cm.	.0739 cm.
Area of cross section -	-	.5953 sq cm.	.5830 sq. cm.
Length of magnetic circuit	-	25.87 cms.	25.90 cms.
Primary turns	**	135	135
Secondary turns	~	10 or 50	10 or 50
Specific resistance at 19° C	-	50320	50440
Specific gravity at 19° C	-	7.58	7.582

The reduction factor of the galvanometer used in the secondary circuit was obtained by passing the current from a cadmium cell through a megohm and the galvanometer in series.

All the resistances used were carefully tested during the course of the experiments, as were also the two standard M coils which were used to determine the absolute value of the magnetizing force.

The symbols used in the accompanying tables are as follow:—

$$\begin{split} \mathbf{T} &= \text{period} = 2\pi/\omega = \cdot 07, \ \cdot 035, \ \cdot 02 \ \text{approx.} \\ \mathbf{H} &= \mathbf{H}_1[\sin\omega t + \lambda_s \sin 3(\omega t - \phi_3) + \lambda_s \sin 5(\omega t - \phi_5) + \dots] \\ \mathbf{B} &= \mathbf{B}_1[\sin(\omega t - \theta) + \delta_s \sin 3(\omega t - \theta - \psi_3) + \delta_5 \sin 5(\omega t - \theta - \psi_5) + \dots] \\ \mu_0 &= \mathbf{B}_1/\mathbf{H}_1 \quad \mu = \mathbf{B}_0/\mathbf{H}_0. \\ \mathbf{U} &= \sigma \mathbf{B}_0^{-1.6} \quad \mathfrak{B} = \frac{\sqrt{2}}{\omega} \mathbf{R}. \mathbf{M}. \mathbf{S}. \left(\frac{d\mathbf{B}}{dt}\right) \\ \mathbf{I} &= \text{Total loss per c.c. per cycle.} \\ \mathbf{U} &= \text{Statical hysteresis loss per cycle.} \\ \mathbf{E} &= \text{Eddy current loss per cycle.} \\ \mathbf{I} - \mathbf{U} - \mathbf{E} &= \text{Kinetic hysteresis per cycle.} \end{split}$$

In Tables I., II., III., are given the analytical results reduced from the series of experiments on the annealed ring, while

LL 11 *	1-1-F	ī	2 6	48.5	82.0	886	174 9	764	1906	2664	4273	6478	13143
6	-	3 1	20.4	963	1510	193.2	3741	603.7	9330	1082	1169	1364	1580
	Þ	69 0	2980	2-206	12.04	1437	2312	3257	+502	+848	5158	5678	6437
		65 3	3260	1047	1437	1729	2861	+625	1467	8594	10600	13470	21160
	Ŗ	10.91	2823	6211	1674	8678	12000	15240	18980	20290	21310	22910	25160
	7	1571	2590	3521	3529	\$174	3046	2206	1485	1269	1021	764	453
	Hmax	655	926.	1.379	1.611	1-848	2 780	4 ú 82	8385	10.20	13 17	18.53	31.60
	Bmax	1029	2426	4857	5771	6422	8468	10330	12447	12941	13421	14168	15068
	40	1628	2812	3999	4141	4109	3700	1818	1844	1597	1283	968	614
	Ş	25.67	21 13	12.81	1039	986	7 65	ó 16	5 07	482	4.27	3 79	3.00
	þ,	023	042	0552	0612	0647	0757	0859	.0945	5160	1016	1047	1158
	5	1.40	16 2	9 85	8 53	7.42	5.99	4.85	3.16	2.82	2 66	2 05	162
	þ,	160	133	176	184	.188	.203	215	220	722.	.234	241	.250
	θ	2337	3+2	3714	35 66	33.99	28.78	22 85	 16.02	14 78	14.4	11 74	10 77
	Æ	1047	2574	5338	6487	51275	29162	12053	14731	15380	16123	17094	18270
	\$5.	21 17	35 47	26 42	33.90	34.62	60 01	636	158	2.03	35 30	33.67	3034
	4	8200	0027	.0025	0073	+600-	0123	0218	0398	0410	0400	- 0405	- 0506
	-0-	5 01	2.91	52.2	8.63	958	2.91	1 13	- 32	8.2 -	- 6.49	- 384	-12 36
	- h.s	7550.	0389	0364	0363	0408	1200.	0765	8610.	0120.	0728	+220.	2280.
	Í	6+3	516.	1-334	1.506	0171	2638	4 434	886.2	961.6	12566	17053	822 62
	F	2220.	0220	2820	0230	6710	0721	6120.	.0722	.0721	7270.	.0736	6+20.
	N°	7	¢1	n	ý.	S	9	1	60	n	10	11	12

Table I. Angrealed Stalloy Speed ora (44)

1											11	1							
I-U-E	ł	346	113 1	111 7	2033	226 5	428	20.04	1085			Ξ-Ω-Ι	1	2 22	588	106-0	176.9	3274	945.0
ы	÷0	20.0	91.9	1873	3677	5195	850.7		1503			۲	8 4	621	2032	8515	5321	702.6	 1685
n	13.7	173	518	915	1429	1888	2705	1 1 1	3945			D	604	312	2+3	1146	1489	0221	2995
п	91	2276	723	1214	2000	2619	3984	1 1 1	6533			ы	64.4	3968	1005	1632	2198	2800	5625
\$2	3 + 8	1953	4149	2165	8301	3355	12690		16890			Ŕ	949	2607	+133	6424	7619	8851	13790
1	551	1820	2793	3446	3384	3210	2762		1803	(q.p)		7	1445	2506	3221	3516	3460	3248	 2112
Hmar	622	956	52.9	1+20	0681	2 3 4 2	3 365		5 260	l .020		Inas	660	+66	335	1.586	1891	2.212	 4 66
Bmax	343	1740	3436	4893	6396	7529	9288		11580	Speed	ı	Bmax 1	953	2489	4299 1	5602	6540	7244	 9846
۴°	566	866	202	183	1665	139	32.9		235	lloy		110	471	2573	515	0285	141	1299	2736
Ľ.	+1 [°] 16	5 12 1	8 23 3	5 41 3	2-19	0 48	9 13		2 68 2	Sta		5	38 24	2954	2139	1734	6 56	15 19	 10.91
b,	1600	278	1334	369	6438	0506	636		608	lled		b,	8200	132	0163	0185	0189	0273	7840
Ľ.	° 6	0 12 0	4 30 (1-90	3 91 6	7.75 .(3 16 6		52	nnea		5	3 36 (2 88 (2 90 0	2 03	0 61	33	 5 66 (
b,	0325	043 2	318 1	+95	635	800	880		090	ΑI		b.	046 3	083 2	114	121 1	132 1	141	 163
θ	0.02	1 2.68 1	0.30	H 50 1	58 02 1	1 90 -1	9 82 1		0.56 2	le II		θ	5 67	0.68	7.24	5 15	-255	+0.16	 7 7 4
μ	3459	1848	3817 4	5325	7312	8494	0650 2		3586	Tab		pq.	939	2514 4	+465 4	6019 4	1059 4	8071	2104
ě,	33.95	22.64	69 21	02.2	1 45	5.69	4 43 1		6.46 1			4	° 13	22.79	16.81	16 16	11 99	13 59	22.27
h.	0057	-0041	6000	5100-	6900	6100	014-7		0205			h.	0082	0066	1200.	0049	-0017	0058	0143
ę	° 6·28	652	11 61	12 97	15 76	12 24	7.35		138			÷	° 16 80	18.18	22 56	2236	2130	20 91	10 59
۰ م	0293	0337	0335	0372	0371	0357	0595		0702			-h,	0377	0321	0340	0312	0318	0324	0751
н.	611 6	975	1-192	1 407	1329	2222	3 199		820 9			H,	639	276	1243	1556	1-850	2 198	+ 423
+	3355	0356	0350	0350	0350	.0352	.0354		0355			۴	0202	0205	0206	0205	.0206	0209	0211
No	-	61	ю	4	s	9	٢		00			No	-	c.1	63	4	ŝ	g	4

Table II Annealed Stalloy Speed 035 (qp)

Stalloy.

331

1719

	I-U-E	10·4	6.5	25.5	870	94 2	6398	1328		1724	2195	3206	372.0
	ш	1:5	12.3	47.5	65.2	87.4	314.2	570.7		6710	9030	1023	1233
	Б	31	204	531	663	808	2221	3480		3942	5063	5383	5909
		42.94	2.2.2.8	604.0	815.2	9.686	3175	5379		6337	8235	9360	10862
	\$	760	2218	4351	5128	5902	11180	15030		16533	19178	20480	22510
	71	12.96	2266	2613	2640	2635	1860	1196		1007	602	613	509
the second se	Hmax	547	·843	1.296	1496	1696	4.345	8.845		10.76	18-12	21.62	27.20
	Bmax	710	1910	3388	3591	4477	8080	10613		11177	12827	13248	13845
	H.	1357	2475	2972	3016	3044	2173	1442		12.78	850.8	750.7	641.4
	Ę,	27,48	1988	12 55	10 64	9 32	5.82	4.05	_	3.93	3.82	3.70	
and and a second se	b,	0278	0404	0564	7770.	0626	6920.	9820.		0825	.0838	.0948	-1126
	Ž	21.03	16.78	10 00	8 39	8.03	4 18	3.36		2.47	2.36	2 33	
	þ,	0956	1340	1701	1692	1742	1931	1924		-2047	2222	2264	-2401
	θ	26 85	33 04	3155	30.66	2938	2112	13 22		11 56	8 11	7.12	
	'n	724	2023	3760	4425	5041	9166	12328		13294	15069	15770	16617
	ð	28 81	12.57	11 30	12.50	8 80	3 85	2 37		0 02	-148	-1.81	-792
	þ,	0042	0035	0040	.0028	.0010	-0154	- 02.28		- 0236	- 0279	- 0276	0303
	÷	7.87	4 10	8 43	9 11	7.47	146	54 90		55 08	5110	5140	56 05
	-h.	0303	0319	0303	0281	0318	0488	- 0533		- 0516	- 0524	- 0518	- 0748
	H.	5340	8175	1 265	1467	1656	4.218	8.546		10 40	17 71	21 00	25 90
	F	£120.	0715	0714	0722	0714	0713	0709		0729	0729	0734	0736
	No	-	2	ъ	4	ŝ	9	2		80	ø	0	=

Table IV. Unannealed Stalloy. Speed 072(qp)

I-U-E	10 3	26.2	1651	182 3	2250	2832	4403	
더	5. S	2.3.8	104 6	1477	1859	2778	4037	
N	64 4	234	617	785	915	1232	1624	
	81.56	284 4	886.2	1115	1326	1793	2468	
ЗЗ.	1077	2171	4568	5454	6155	7522	9015	
T	1347	1852	2444	2499	2509	2362	2191	
Hmax	.773	1-075	1.530	1760	1951	2424	3 240	
Bmax	1034	1991	3738	4391	4892	5732	6627	
۰۲	1391	1977	2754	2819	2898	2812	2555	
Ę,	32,85	24 54	16.06	14-25	12.84	1145	927	
þ,	0189	.0277	0398	04-60	.0514	0599	.0675	
Ļ	25.34	18.79	12.58	11.88	10.47	8.42	7.88	
م	0788	0940	1436	1600	1636	1727	1842	
θ	24.28	31-98	35.68	34.20	32.84	29.87	26.87	
B	1044	2071	4127	4816	5393	6457	7568	
Φ,	3 52	6.16	2515	23.49	20.19	13 51	172	
h,	0018	-0047	6200-	0025	0013	6200-	-0038	
¢,	5.67	7.43	9 92	12 00	8.83	7.52	7-21	
-h,	.0302	.02.85	.0270	0385	0269	0282	.0235	
H,	751	1047	1-498	1 709	1861	2.296	2,962	
[]	0355	0354	0357	.0360	0365	0365	0360	
°.N	-	2	53	4	5	6	5	

Table V. Unannealed Stalloy. Speed 035(q.p.)

Table VI. Unannealed Stalloy. Speed 021(q.p)

	-U-F	21.9	28.9	81.0	263.3	296.1	368.6	076	
	E	14 4	53.6 1	59.2	219-1	2751	+15 4	0601	
	Ŋ	921	291.2	6490	2.79-6	9238	1231	2500	
	1	1284	473 5	985.2	1262	1495	2015	4666	
	R	12.98	2500	4298	5090	5749	7084	11537	
	н	15+2	2067	2486	2475	2444	2338	1678	
-	Hmax	801	1102	1-525	1.726	1928	2 398	5 050	
	Bmax	1261	2325	3872	4363	4816	5726	8626	
2	'n	1616	2213	2642	2759	2758	2763	1986	
	Ś	3138	26 31	19.93	17.87	15 94	13 90	10 68	
	p,	•0074	5610	0256	0306	0362	0424	0610	
	Ų,	25.64	20 60	14.69	12 91	11.96	966	7.21	
	مٌ	0795	1063	1324	1318	1395	.1530	1750	
	θ	32 32	39 24	41 04	40.03	37.60	3450	23 68	
	'n	1262	2372	3965	4686	5231	6319	9867	
	φ,	° 10	11-79	12 38	13 55	14.06	15.03	18 81	
	h,	0008	0002	0024	0038	.0045	0065	0134	
	۰ م	7 30	10-25	10.78	15.07	13 34	11.39	5.99	
	-h,	0286	0407	.0269	.0249	0222	.0222	0474	
	• H	182.	1 072	1 500	1-699	1897	2.239	4 968	
	F	0209	0209	0208	0212	0215	0216	0219	
	ŝΝ	-	5	m	4	ŝ	9	Ŀ	

Stalloy.

Tables IV., V., Vl., give the corresponding results for the unannealed ring.

In each set a space is left in the rows below which the influence of the higher harmonics begin to be noticeable. Generally the sign of these higher harmonics is negative in the magnetizing force, and in the induction always positive. S. P. Thompson's method of analysis was used for these more distorted waves and the inclusion of the higher harmonics considerably modified the total losses.

Above the space in the rows, the readings may be taken as belonging to approximately sinusoidal waves. In the graphs all the chief characteristics of the induction waves are plotted against the amplitude of their first harmonic (B_1) .

The results of the statical experiments show several interesting features. The hysteresis constant has its maximum value about .0015 which is about the same as Epstein's value. On plotting it against the induction a smooth curve was obtained which rises from the origin to a maximum value at an induction of 3000 (the value of σ being .00122), it then decreases to a minimum at 4000, after which there is a steady rise which continues as far as the experiments go. This curve is similar in shape to that obtained when using ordinary iron.¹

"Stalloy" needs careful handling especially in the unannealed state in order to obtain symmetrical results. When the magnetizing current is gradually increased and reversals are frequently the hysteresis loops are symmetrical and the Steinmetz coefficient when plotted against the maximum induction gives a smooth graph. But if, after working at high densities, an experiment is made with a small magnetizing force the loop will be found to be unsymmetrical and the corresponding value of σ will lie outside the previously obtained σ graph. This has also been drawn attention to by Wilson. In the unannealed state therefore "Stalloy" seems to be magnetically unstable so that the previous history of the material has a very marked effect upon its subsequent behaviour. The annealed "Stalloy" showed similar results but these were very little more noticeable than those obtained for ordinary iron.

¹ T. R. Lyle. Loc. cit.

Stalloy.

The other chief results of annealing are to increase the permeability and to lower the hysteresis loss. The values of the permeability μ did not rise to nearly the values obtained by other observers. For unannealed "Stalloy" the maximum is 2660 at an induction of about 4000 and in the annealed rises to 3500 at an induction of about 6000.

Table VII. Statical Results. (a) Unannealed Stalloy.

N°	Hmax	Bmax	μ	U
1	.6366	743 2	1167	32 90
2	9879	2301	2329	2874
3	1.257	3338	2655	523-0
4	1.500	3987	2658	677 9
5	1.801	4734	2629	928.7
6	1992	5161	2591	1057
7	3 18 9	6805	2134	1668
8	6 6 3 2	9404	1418	3061
9	11 747	11458	9764	4172
10	19 497	12532	6428	4609

(b)Annealed Stalloy.

N	-	Hmax	Bmax	μ	U
1		- 6411	684 +	1068	32.17
2		·9464	2262	2390	266 8
3		1.276	4152	3254	6997
4		1.756	6074	3+59	1318
5		1977	6762	3420	1564
6		6.320	11645	1842	3966
7		16.035	13952	870	5600

The more important results of the experiments for alternating currents will be readily seen by reference to the accompanying figures while their more accurate details are given in Tables I. to VI. In making comparisons between "Stalloy" and ordinary iron the results obtained by Professor Lyle for good samples of transformer iron have been assumed.

In Figs. 1, 2a, 2b, the more important characteristics of the induction waves which are set out in Tables I. and IV. are plotted against the amplitudes of the first harmonics of these waves.

The curves obtained for "Stalloy" are typical in general appearance of those obtained for iron and, although plotted here for only the lowest frequency, will be found similar in appearance for all the induction waves, provided the periods are constant throughout a series of experiments and are produced by currents of similar wave forms.

The characteristics μ_0 and θ fall in all cases to low values as the values of B_1 become small and probably vanish with B_1 . The rise of θ in the region of low densities is steeper for annealed iron than for annealed "Stalloy," the appearance of the graph for iron being somewhat like that drawn here for the unannealed "Stalloy." There is this important difference, namely, that for iron, θ frequently rises to maximum of 52° whereas for "Stalloy" the maximum obtained for the same frequency was 47°.

The effect of annealing upon θ is to increase its magnitude for all inductions over about 2000. It will be noticed in the accompanying graph that the maximum value of θ increases on annealing from 33° to 38°. After attaining a maximum value for θ the graph assumes a steady downward gradient, which is practically constant for both annealed and unannealed samples. Along this gradient there is approximately a constant difference in value of θ of about 8° for all values of the above inductions. For ordinary working inductions therefore 8° may be taken as the increase effect produced upon θ by annealing.

A difference in the appearance of the permeability curve is to be noted. For iron this curve takes an almost parabolic form, having its axis vertical and its apex at an induction of about 10,000 the maximum value of μ_0 rising only a little above 3,000 generally.

Annealed "Stalloy" has a maximum permeability of 4140 which is attained at an induction of 6500, while the unannealed ring gives a maximum value of about 3100 at an induction of

4500. The μ_0 graph for "Stalloy" is therefore steeper for the smaller inductions before the maximum value is reached, after this the downward gradient is more gradual than for iron and at the same time more constant. In general, for a given induction μ_0 is considerably greater for "Stalloy" than for iron.

The effect of annealing is to increase the value of the characteristic very largely. The magnitude of this increase will be best seen in Fig. 1, the corresponding curves for the other periods of alteration being very similar in appearance.

The total loss (I.) in the "Stalloy" shows a distinct improvement over that for iron. For all inductions and for all frequencies the total loss is found to be less for "Stalloy" than for ordinary iron of the same thickness. A very fair impression of the "Stalloy" total losses will be obtained by taking two-thirds of the corresponding values for ordinary iron at all inductions. It is also important to notice that these losses are greatly reduced by annealing. This reduction is not very appreciable for inductions below 5000, but above that there is a marked difference. It will be noticed however that the curves intersect where the induction is 15,500; for inductions above this the annealed losses increase very rapidly. In comparing these figures with those obtained for iron by Lyle it should be remembered that we have included the effects of the higher harmonics which in the unannealed ring were considerable. The conclusions arrived at for these total losses, namely that "Stalloy" is superior to iron in this respect and that annealing very considerably reduces such losses, although discussed for one speed only are fully borne out by the results for the other speeds as will be readily seen by plotting curves for the total loss from the other tables given.

Fig. 2a shows the effect of annealing upon the phase lag of of the third and fifth harmonics of the induction behind the first.

Both ψ_3 and ψ_5 fall rapidly from a maximum value for each as the value of B₁ is increased from zero, they then seem to reach small limiting values when B₁ is increased to high values. Here again as in the statical experiments the necessity of careful handling was proved imperative. We obtain further evidence of the instability of the unannealed "Stalloy," for in general the experimental variation from the graph is wider for it than for

the annealed "Stalloy." In one series of experiments in which the readings were extended to an induction of about 20,000 the analysis showed that all the ψ 's suddenly tended towards a zero value but as the higher harmonics were so pronounced and the wave form so distorted these results are not included in the tables or graphs. That these angles tend to zero value at the high inductions may be seen by plotting the readings for Table III.

Comparison with iron show that for extreme values, i.e., for very low and very high inductions the values of the ψ 's are about the same. But between these limits the "Stalloy" gradient is less steep than that for iron especially for the higher frequencies, so that in general for a given induction ψ is greater for "Stalloy" than for iron. Annealing as can be seen in Fg. 2a has the effect of increasing ψ for all inductions, this increase being more marked in the higher frequencies.

In Fig. 2b are given the corresponding curves for b_s and b_s . These curves apparently start from the origin, rise rapidly until $B_1 = 1000$ and then steadily and gradually increase. The shapes of the curves are similar to those obtained for iron, and the values obtained about the same, a very slight increase being noticeable. Annealing makes only a slight difference in these characteristics for the low frequency, for the curves intersect more than once, and what variation there is might almost be due to instability. On plotting the figures for the higher frequencies, however, we notice a gradual decrease as was the case for iron in the values of b_s and b_s as we increase the frequency, as well as a marked difference between the values for the unannealed and annealed "Stalloy," which amounts in the highest speed taken to about 10 per cent. of the latter.

From a practical point of view Fig. 3 is perhaps the most interesting. In this figure the values of the total, hysteresis, and eddy-current losses are given for the annealed ring. These curves show an almost proportional increase of I and E with increase of frequency. That this should be so for E is evident, but on examination we find that I is given approximately in terms of n and \mathfrak{B} for values of induction up to 11,000 by the Steinmetz analogue proposed by Lyle for iron. Namely for the annealed ring.

Stalloy.

 $1 = (.00106 + .0000226n) \mathfrak{L}^{1.55}$

and for the unannealed ring

 $I = (.00184 + .0000331n) \mathfrak{B}^{1.5.}$

These forms agree fairly well with experiment except in a few isolated cases occurring chiefly in the unannealed sample. The value of the exponent for each case is remarkable, for it seldom falls below 1.57 for iron.

A fair average equation for transformer iron was found to be

$$I = (.00175 + .000027n)\mathfrak{B}^{1.5}$$

The results for eddy-current losses found by us fully substantiate the claims made by the makers of "Stalloy." The value of the specific resistance was found slightly higher than that given by other experimenters but 50,000 may be taken as a fair working value. These discs, which are much thicker (.075 cm q.p.) than those usually used in iron work, show an eddy-current loss much less than that calculated for iron of only half the thickness, the value being about one quarter of the total loss. Seeing that for "Stalloy" I is itself less than for iron, the former must be considered admirably suitable for transformer work. The values of E increase rather considerably with increase of frequency the relative increase being greater than for I. This fact will be seen from Fig. 3 which gives all the losses to the same scale.

Perhaps the most remarkable results are those obtained for the hysteresis loss U. The values for the middle frequency (.035)only are plotted in the figures; but by examining the Tables I. and 111. it will be found that the values for the other frequencies practically coincide with those from which the graph is plotted. Results for ordinary iron show an increase of U with frequency which although small is still much greater than the maximum variation for "Stalloy" which occurs between the frequencies .035 and .02. The values of U for frequencies .07 and .035 are practically identical. For "Stalloy" therefore U seems to be independent of the frequency and only about half the magnitude of that obtained for ordinary iron.

The values of the "kinetic hysteresis" I-U-E are given in the tables. On plotting, these results will be found to form smooth graphs which reveal an increase of magnitude with increase of frequency. Here again the values are less than

. those obtained for transformer iron. The values of U obtained by us are less than those obtained by Wilson, Winson and O'Dell, and others, but are practically identical with the results given by Barrett, Brown and Hadfield for a sample of silicon iron closely allied to "Stalloy" in composition.

Fig. 4, which shows the effect of variation of frequency upon the retardation and permeability for the annealed sample, is interesting in view of the results just referred to. In general the results show a similarity of variation to those obtained for iron, that is θ increases regularly with increase of frequency while μ_0 decreases. In both cases the maxima are reached at about the same induction, those for θ at an induction of 4500 and for μ_0 at an induction of about 6500.

One point is striking, namely, that the graphs for μ_0 for frequencies .035 and .02 intersect. Since there were a fair number of points taken and the results were very different in the two cases, this cannot be due to experimental error nor to any variation in the wave form of the magnetizing current, for the tables show this to be very constant. Corresponding to this deviation from the usual result will be noticed a distinct difference in the general appearance of the graphs for θ which is not existent in the graphs for iron. This correspondence is to be expected seeing that μ_0 and θ each depend on B_1 and ω as well as upon the wave form of H₁. Whatever deviation from the usual rule for iron there is, seems to have taken place in the middle frequency, so that for this particular frequency μ_0 is for inductions up 5000 less that one would expect. It may be possible that the previous high current densities used in the lower frequency had some after effect lasting until the maximum was reached, though precautions were taken to avoid this.

Summing up, therefore, generally, we may say that the chief results to be noticed are that—

- (1) "Stalloy" cannot be used to advantage in the unannealed condition.
- (2) In the annealed state the results obtained fully bear out the claims made by the makers, the permeability being very high and the losses small, particularly the eddy-current loss.

Proc. R.S. Victoria, 1910. Plate LXII.